
Import packages

Data manipulation

import pandas as pd

import numpy as np

import pandas_datareader as data

Plotting

import matplotlib

import seaborn as sns

import matplotlib.pyplot as plt

import matplotlib.ticker as ticker

Finance related operations

from pandas_datareader import data as pdf

import yfinance as yfin

Import this to silence a warning when converting data column of a datafram

from pandas.plotting import register_matplotlib_converters

register_matplotlib_converters()

Sklearn

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_validate

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import GridSearchCV

from sklearn.linear_model import LogisticRegression

from sklearn.linear_model import LogisticRegressionCV

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import PolynomialFeatures

from sklearn.decomposition import PCA

from sklearn.metrics import accuracy_score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import BaggingClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.ensemble import GradientBoostingClassifier

from imblearn.over_sampling import SMOTE

from imblearn.under_sampling import RandomUnderSampler

from tabulate import tabulate

AC 209A Final Project

Predicting Stock Variation Using Financial

Indicators

In [55]:

Sabrina Hu and Hamzeh Hamdan

Harvard University

Fall 2022

Table of Contents

1. Introduction & Main Objectives

2. Summary of the Data

3. EDA and Data Cleaning

4. Part I: Basic Models

A. Feature Selection

B. K-nn & Logistic Regression

C. Decision Trees

5. Part II: Advanced Models

A. Neural Networks

B. SVM

C. XGBoost

6. Results & Discussion

7. Limitations and Future Work

Introduction and Main Objectives

Return to contents

Predicting the movements of stocks over time based on various financial and

economic indicators is a common task in the field of finance and investment ---

investors and traders rely on these predictions to assess when to buy, sell, and

hold stocks, and also to gain a competitive edge in the markets and maximize

returns while managing risk. However, predicting the movement of stocks is not

an easy task, as prices are constantly fluctuating based on many complex

factors like economic indicators, corporate earnings reports, geopolitical events,

and market sentiment. In this project, our objective is to understand the

relationship between various financial indicators and the increase or decrease in

value of a stock.

The key research questions guiding our project include:

Which financial indicators are the best predictors of stock price/stock price

increase or decrease?

What type of model can best use financial indicators to classify the increase

or decrease of a stock?

The data we will use is the 2018 data from this Kaggle dataset: ‘200+ Financial

Indicators of U.S. stocks (2014-2018)’:

https://www.kaggle.com/datasets/cnic92/200-financial-indicators-of-us-stocks-

20142018?select=2018_Financial_Data.csv

We will first conduct some exploratory data analysis of this dataset before

proceeding with the models.

Summary of the Data

Return to contents

First, we load the data as a pandas dataframe and drop rows with no information.

We find that the data has 4392 samples and 224 columns. Of these, 222 are

numeric, 1 is an int type, and 1 is an object type.

These are:

222 numeric: financial indicators

1 integer: class column (1 = positive stock price variation, 0 = negative

stock price variation)

1 object: categorical name of the sector

Create a pandas DF of the data, making sure that the stock ticker is the i

df = pd.read_csv('data/2018_Financial_Data.csv', index_col=0)

Drop rows with no information

df.dropna(how='all', inplace=True)

df = df.loc[:, ~df.columns.str.contains('^Unnamed')]

df.info()

<class 'pandas.core.frame.DataFrame'>

Index: 4392 entries, CMCSA to ZYME

Columns: 224 entries, Revenue to Class

dtypes: float64(222), int64(1), object(1)

memory usage: 7.5+ MB

Shape of dataset

print(df.shape)

(4392, 224)

print("Features of the dataset and their data types:")

print(df.dtypes)

In [56]:

In [57]:

In [58]:

https://www.kaggle.com/datasets/cnic92/200-financial-indicators-of-us-stocks-20142018?select=2018_Financial_Data.csv
https://www.kaggle.com/datasets/cnic92/200-financial-indicators-of-us-stocks-20142018?select=2018_Financial_Data.csv

Features of the dataset and their data types:

Revenue float64

Revenue Growth float64

Cost of Revenue float64

Gross Profit float64

R&D Expenses float64

 ...

R&D Expense Growth float64

SG&A Expenses Growth float64

Sector object

2019 PRICE VAR [%] float64

Class int64

Length: 224, dtype: object

Describe dataset variables

df.describe()

Revenue
Revenue

Growth

Cost of

Revenue
Gross Profit

R&

Expens

count 4.346000e+03 4253.000000 4.207000e+03 4.328000e+03 4.155000e+

mean 5.119287e+09 3.455278 3.144946e+09 2.043954e+09 1.180176e+

std 2.049504e+10 195.504906 1.508813e+10 7.682369e+09 9.330891e+

min -6.894100e+07 -3.461500 -2.669055e+09 -1.818220e+09 -1.042000e+

25% 6.501425e+07 0.000000 3.415500e+06 3.618903e+07 0.000000e+

50% 4.982640e+08 0.074900 1.741180e+08 2.219470e+08 0.000000e+

75% 2.457878e+09 0.188500 1.297814e+09 9.767015e+08 1.450150e+

max 5.003430e+11 12739.000000 3.733960e+11 1.269470e+11 2.883700e+

8 rows × 223 columns

Exploratory Data Analysis and Data Cleaning

Return to contents

Exploratory Data Analysis

First, we will do some exploratory data analysis of our dataset to extract

important insights and learn how the variables are related to each other.

We plotted the % price variation for all observations, and also specifically by

sector. We also plotted bar graphs of class counts (1 = positive price variation, 0

= negative price variation) and sector counts. Here are some key observations:

In [59]:

Out[59]:

The % Price Var mainly centers around 0, which shows that most stocks do

not significantly increase or decrease. This may tell us that the classification

problem in this case may be a better problem to pursue than predicting the

actual value of the stock variation.

When plotting the % Price Var by sector, we see that all sectors generally

center around 0, which follows the overall trend. However, real estate and

utilities are the only sectors where the $ price variation doesn't center

around 0, which may indicate that being in those sectors is correlated with

positive % price variation.

The samples are not balanced in terms of class. This is very important and

should be accounted for when splitting the data between the training and

testing data. We have approximately 3000 stocks of class count 1 (they are

buy-worthy stocks that had a positive annual return), and just under 1500 of

class count 0 (they are not buy-worthy stocks as they had a negative. annual

return).

The sectors are not equally represented in the data. There are 5 sectors with

500+ stocks and the remanining 6 have less than 300 stocks. Of these, 2

have less than 100 stocks. This should be kept in mind as we choose our

model.

We then try to find errors in the data by plotting the annual price variation of

each stock in a sector along a graph. Very high values can be errors in data entry

or simply inorganic growth in returns. We found that these sectors had at least

one stock with over ~500% returns, and likely are not realistic: Consumer

Cyclical, Technology, Industrials, Consumer Defensive, and Healthcare. Note that

this choice was arbitrary.

There were a total of 8 stocks under this category. For each one, we plotted the

daily close value for the year along with the volume. This helps us find out if the

gains are organic or are due to an error. We find that of those, DRIO seems to not

be organic as the price jumps x8 very quickly, then doubles yet again within a

month. We dropped this stock from the data. We also drop the 4 stocks that have

been delisted from the data.

Plot price variation distribution

plt.hist(df['2019 PRICE VAR [%]'], bins=50, edgecolor='black')

plt.title('HISTOGRAM OF % PRICE VAR', fontsize=10)

plt.xlabel('% Price Var')

plt.ylabel('Frequency')

plt.show()

In [60]:

Extract the columns we need in this step from the dataframe

df_ = df.loc[:, ['Sector', '2019 PRICE VAR [%]']]

Get list of sectors

sector_list = df_['Sector'].unique()

Create a 3x4 grid for the histograms

fig, axs = plt.subplots(3, 4, figsize=(20, 15))

axs = axs.ravel()

Plot the histogram of percent price variation for each sector

for i, sector in enumerate(sector_list):

 temp = df_[df_['Sector'] == sector]

 axs[i].hist(temp['2019 PRICE VAR [%]'], bins=30, edgecolor='black')

 axs[i].set_title('Histogram of % Price Var for ' + sector.upper(), fonts

 axs[i].set_xlabel('% Price Var')

 axs[i].set_ylabel('Frequency')

plt.tight_layout()

plt.show()

In [61]:

Create a 1x2 grid for the subplots

fig, axs = plt.subplots(1, 2, figsize=(20, 10))

Plot class distribution

df_class = df['Class'].value_counts()

sns.barplot(x=df_class.index, y=df_class, ax=axs[0])

axs[0].set_title('CLASS COUNT', fontsize=20)

Plot sector distribution

df_sector = df['Sector'].value_counts()

sns.barplot(x=df_sector.index, y=df_sector, color='lightblue', ax=axs[1])

axs[1].set_xticks(np.arange(len(df_sector)))

axs[1].set_xticklabels(df_sector.index.values.tolist(), rotation=90)

axs[1].set_title('SECTORS COUNT', fontsize=20)

plt.tight_layout()

plt.show()

In [62]:

/Users/Sabrina/micromamba/envs/cs109a/lib/python3.11/site-packages/seaborn/_

oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will

be removed in a future version. Use isinstance(dtype, CategoricalDtype) inst

ead

 if pd.api.types.is_categorical_dtype(vector):

/Users/Sabrina/micromamba/envs/cs109a/lib/python3.11/site-packages/seaborn/_

oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will

be removed in a future version. Use isinstance(dtype, CategoricalDtype) inst

ead

 if pd.api.types.is_categorical_dtype(vector):

/Users/Sabrina/micromamba/envs/cs109a/lib/python3.11/site-packages/seaborn/_

oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will

be removed in a future version. Use isinstance(dtype, CategoricalDtype) inst

ead

 if pd.api.types.is_categorical_dtype(vector):

/Users/Sabrina/micromamba/envs/cs109a/lib/python3.11/site-packages/seaborn/_

oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will

be removed in a future version. Use isinstance(dtype, CategoricalDtype) inst

ead

 if pd.api.types.is_categorical_dtype(vector):

/Users/Sabrina/micromamba/envs/cs109a/lib/python3.11/site-packages/seaborn/_

oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will

be removed in a future version. Use isinstance(dtype, CategoricalDtype) inst

ead

 if pd.api.types.is_categorical_dtype(vector):

/Users/Sabrina/micromamba/envs/cs109a/lib/python3.11/site-packages/seaborn/_

oldcore.py:1498: FutureWarning: is_categorical_dtype is deprecated and will

be removed in a future version. Use isinstance(dtype, CategoricalDtype) inst

ead

 if pd.api.types.is_categorical_dtype(vector):

Get stocks that increased more than 500%

gain = 500

top_gainers = df_[df_['2019 PRICE VAR [%]'] >= gain]

top_gainers = top_gainers['2019 PRICE VAR [%]'].sort_values(ascending=False)

print(f'{len(top_gainers)} STOCKS with more than {gain}% gain.')

Set

In [63]:

date_start = '2019-01-01'

date_end = '2019-12-31'

tickers = top_gainers.index.values.tolist()

Create a 2x2 grid for the subplots

fig, axs = plt.subplots(2, 2, figsize=(20, 15))

axs = axs.ravel()

j = 0

for i, ticker in enumerate(tickers):

 try:

 yfin.pdr_override()

 # Pull daily prices for each ticker from Yahoo Finance

 daily_price = pdf.get_data_yahoo(ticker, start=date_start, end=date_

 # Check if data download was successful

 if not daily_price.empty:

 # Plot prices with volume

 axs[j].plot(daily_price['Adj Close'])

 axs[j].set_title(ticker, fontsize=18)

 axs[j].set_ylabel('Daily Adj Close $', fontsize=14)

 axs[j].yaxis.set_major_formatter(matplotlib.ticker.StrMethodForm

 j += 1

 else:

 print(f"Data not available for {ticker}. Skipping plot.")

 except Exception as e:

 print(f"Error fetching data for {ticker}: {e}")

fig.tight_layout()

plt.show()

8 STOCKS with more than 500% gain.

[*********************100%%**********************] 1 of 1 completed

[*********************100%%**********************] 1 of 1 completed

1 Failed download:

['ANFI']: Exception('%ticker%: No timezone found, symbol may be delisted')

Data not available for ANFI. Skipping plot.

[*********************100%%**********************] 1 of 1 completed

1 Failed download:

['SSI']: Exception('%ticker%: No timezone found, symbol may be delisted')

Data not available for SSI. Skipping plot.

[*********************100%%**********************] 1 of 1 completed

[*********************100%%**********************] 1 of 1 completed

[*********************100%%**********************] 1 of 1 completed

[*********************100%%**********************] 1 of 1 completed

1 Failed download:

['ARQL']: Exception('%ticker%: No timezone found, symbol may be delisted')

Data not available for ARQL. Skipping plot.

[*********************100%%**********************] 1 of 1 completed

1 Failed download:

['HEBT']: Exception('%ticker%: No timezone found, symbol may be delisted')

Data not available for HEBT. Skipping plot.

delisted_stocks = ['ANFI', 'SSI', 'ARQL', 'HEBT']

df_ = df_.drop(delisted_stocks + ['DRIO'], errors='ignore')

Data Cleaning - Missing Values

After doing a quick check for missing values, we found that there were many

variables with a lot of missing values or 0 values. We plotted this as a

percentage and filtered through predictors using this method.

We used an ~6% nan and zeros dominance threshold to drop columns (so that

each feature is at most ~6% nan values and at most ~6% zero values). This

resulted in dropping the top 50% nan-dominant financial indicators, and the top

40% zero-dominant financial indicators. This resulted in 70 remaining predictors

of the 224.

Then, we deleted the top 3 and bottom 3 percentiles of the data in order to

account for outliers.

Finally, we imputed missing values with the mean of the column's sector, given

the underlying characteristics of the stocks in each sector. This should not have

a large impact on our analysis since this was only ~6% of all data in the

columns.

In [64]:

missing_values = df.isnull().sum()

missing_df = pd.DataFrame({'Column': missing_values.index, 'Missing Values':

missing_df = missing_df.sort_values(by='Missing Values', ascending=False)

print(missing_df)

 Column Missing Values

112 cashConversionCycle 4386

110 operatingCycle 4386

127 shortTermCoverageRatios 1926

208 10Y Shareholders Equity Growth (per Share) 1695

82 priceEarningsToGrowthRatio 1658

..

54 Retained earnings (deficit) 21

70 Financing Cash Flow 19

221 Sector 0

222 2019 PRICE VAR [%] 0

223 Class 0

[224 rows x 2 columns]

From the above, we observe that the two columns with the most missingness are

'cashConversionCycle' and 'operatingCycle', both other which are missing almost

all of their values. Although there are many reasons for why certain indicators

might be missing so much data, whether it be through data collection methods

or the actual companies' records, in this case, it is likely that the indicators with

so much missingness are not collected as rigorously for a reason. Thus, it is

much more practical to remove these indicators, especially since we have 222 to

begin with.

Below, we plotted both the NAN-values and zero-values count for all of the

indicators, just to given a picture of how much missingness there is overall in the

dataset. We also plotted the indicators with the highest NAN and zero

dominance.

Drop columns relative to classification, we will use them later

class_data = df.loc[:, ['Class', '2019 PRICE VAR [%]']]

df.drop(['Class', '2019 PRICE VAR [%]'], inplace=True, axis=1)

Plot initial status of data quality in terms of nan-values and zero-values

nan_vals = df.isna().sum()

zero_vals = df.isin([0]).sum()

ind = np.arange(df.shape[1])

plt.figure(figsize=(50,10))

plt.subplot(2,1,1)

plt.title('INITIAL INFORMATION ABOUT DATASET', fontsize=22)

plt.bar(ind, nan_vals.values.tolist())

plt.ylabel('NAN-VALUES COUNT', fontsize=18)

In [65]:

In [66]:

plt.subplot(2,1,2)

plt.bar(ind, zero_vals.values.tolist())

plt.ylabel('ZERO-VALUES COUNT', fontsize=18)

plt.xticks(ind, nan_vals.index.values, rotation=90)

plt.show()

Find count and percent of nan-values, zero-values

total_nans = df.isnull().sum().sort_values(ascending=False)

percent_nans = (df.isnull().sum()/df.isnull().count() * 100).sort_values(asc

total_zeros = df.isin([0]).sum().sort_values(ascending=False)

percent_zeros = (df.isin([0]).sum()/df.isin([0]).count() * 100).sort_values(

df_nans = pd.concat([total_nans, percent_nans], axis=1, keys=['Total NaN', '

df_zeros = pd.concat([total_zeros, percent_zeros], axis=1, keys=['Total Zero

Graphical representation

plt.figure(figsize=(15,5))

plt.bar(np.arange(30), df_nans['Percent NaN'].iloc[:30].values.tolist())

plt.xticks(np.arange(30), df_nans['Percent NaN'].iloc[:30].index.values.toli

plt.ylabel('NAN-Dominance [%]', fontsize=18)

plt.grid(alpha=0.3, axis='y')

plt.show()

plt.figure(figsize=(15,5))

plt.bar(np.arange(30), df_zeros['Percent Zeros'].iloc[:30].values.tolist())

plt.xticks(np.arange(30), df_zeros['Percent Zeros'].iloc[:30].index.values.t

plt.ylabel('ZEROS-Dominance [%]', fontsize=18)

plt.grid(alpha=0.3, axis='y')

plt.show()

In [67]:

Find reasonable threshold for nan-values situation

test_nan_level = 0.5

print(df_nans.quantile(test_nan_level))

_, thresh_nan = df_nans.quantile(test_nan_level)

Find reasonable threshold for zero-values situation

test_zeros_level = 0.6

print(df_zeros.quantile(test_zeros_level))

_, thresh_zeros = df_zeros.quantile(test_zeros_level)

In [68]:

Total NaN 251.000000

Percent NaN 5.714936

Name: 0.5, dtype: float64

Total Zeros 282.600000

Percent Zeros 6.434426

Name: 0.6, dtype: float64

Clean dataset applying thresholds for both zero values, nan-values

print(f'INITIAL NUMBER OF VARIABLES: {df.shape[1]}')

print()

df_test1 = df.drop((df_nans[df_nans['Percent NaN'] > thresh_nan]).index, axi

print(f'NUMBER OF VARIABLES AFTER NaN THRESHOLD 6%: {df_test1.shape[1]}')

print()

df_zeros_postnan = df_zeros.drop((df_nans[df_nans['Percent NaN'] > thresh_na

df_test2 = df_test1.drop((df_zeros_postnan[df_zeros_postnan['Percent Zeros']

print(f'NUMBER OF VARIABLES AFTER Zeros THRESHOLD 6%: {df_test2.shape[1]}')

INITIAL NUMBER OF VARIABLES: 222

NUMBER OF VARIABLES AFTER NaN THRESHOLD 6%: 122

NUMBER OF VARIABLES AFTER Zeros THRESHOLD 6%: 62

Check our filtered dataset

df_test2.describe()

Revenue
Revenue

Growth
Gross Profit

SG&A

Expense

Operati

Expens

count 4.346000e+03 4253.000000 4.328000e+03 4.226000e+03 4.208000e+

mean 5.119287e+09 3.455278 2.043954e+09 9.005022e+08 1.435546e+

std 2.049504e+10 195.504906 7.682369e+09 3.661116e+09 5.529831e+

min -6.894100e+07 -3.461500 -1.818220e+09 -1.401594e+08 -4.280000e+

25% 6.501425e+07 0.000000 3.618903e+07 2.056226e+07 4.223644e+

50% 4.982640e+08 0.074900 2.219470e+08 9.390450e+07 1.806253e+

75% 2.457878e+09 0.188500 9.767015e+08 4.117162e+08 6.796040e+

max 5.003430e+11 12739.000000 1.269470e+11 1.065100e+11 1.065100e+

8 rows × 61 columns

Filter numeric columns

numeric_columns = df_test2.select_dtypes(include='number').columns

Cut outliers

top_quantiles = df_test2[numeric_columns].quantile(0.97)

outliers_top = (df_test2[numeric_columns] > top_quantiles)

In [69]:

In [70]:

Out[70]:

In [71]:

low_quantiles = df_test2[numeric_columns].quantile(0.03)

outliers_low = (df_test2[numeric_columns] < low_quantiles)

df_test2[numeric_columns] = df_test2[numeric_columns].mask(outliers_top, top

df_test2[numeric_columns] = df_test2[numeric_columns].mask(outliers_low, low

Take a look at the dataframe post-outliers cut

df_test2.describe()

Revenue
Revenue

Growth
Gross Profit

SG&A

Expense

Operating

Expenses

count 4.346000e+03 4253.000000 4.328000e+03 4.226000e+03 4.208000e+03

mean 3.437039e+09 0.135876 1.429547e+09 6.077564e+08 9.843496e+08

std 7.342150e+09 0.303442 3.264442e+09 1.394325e+09 2.222997e+09

min 0.000000e+00 -0.409488 0.000000e+00 8.908962e+05 4.198818e+06

25% 6.501425e+07 0.000000 3.618903e+07 2.056226e+07 4.223644e+07

50% 4.982640e+08 0.074900 2.219470e+08 9.390450e+07 1.806253e+08

75% 2.457878e+09 0.188500 9.767015e+08 4.117162e+08 6.796040e+08

max 3.366963e+10 1.248900 1.596702e+10 6.754875e+09 1.091602e+10

8 rows × 61 columns

Replace nan-values with mean value of column's sector

for column in df_test2.select_dtypes(include=[np.number]).columns:

 df_test2[column] = df_test2.groupby('Sector')[column].transform(lambda x

Plot correlation matrix of output dataset

fig, ax = plt.subplots(figsize=(20,15))

sns.heatmap(df_test2.select_dtypes(include=[np.number]).corr(), annot=False,

plt.title("Correlation Matrix of the Predictors", fontsize=32)

plt.show()

Out[71]:

In [72]:

In [73]:

We outputted a correlation matrix of the indicators left, just to give a better

sense of the relationships between the various indicators.

Add the sector column

df_out = df_test2.join(df['Sector'], rsuffix='_right')

Add back the classification columns

df_out = df_out.join(class_data)

Print information about dataset

df_out.info()

df_out.describe()

In [74]:

<class 'pandas.core.frame.DataFrame'>

Index: 4392 entries, CMCSA to ZYME

Data columns (total 65 columns):

Column Non-Null Count Dtype

--- ------ -------------- -----

0 Revenue 4392 non-null float64

1 Revenue Growth 4392 non-null float64

2 Gross Profit 4392 non-null float64

3 SG&A Expense 4392 non-null float64

4 Operating Expenses 4392 non-null float64

5 Operating Income 4392 non-null float64

6 Earnings before Tax 4392 non-null float64

7 Net Income 4392 non-null float64

8 Net Income Com 4392 non-null float64

9 EPS 4392 non-null float64

10 EPS Diluted 4392 non-null float64

11 Weighted Average Shs Out 4392 non-null float64

12 Weighted Average Shs Out (Dil) 4392 non-null float64

13 Gross Margin 4392 non-null float64

14 EBIT Margin 4392 non-null float64

15 EBITDA 4392 non-null float64

16 EBIT 4392 non-null float64

17 Consolidated Income 4392 non-null float64

18 Earnings Before Tax Margin 4392 non-null float64

19 Net Profit Margin 4392 non-null float64

20 Cash and cash equivalents 4392 non-null float64

21 Cash and short-term investments 4392 non-null float64

22 Total current assets 4392 non-null float64

23 Property, Plant & Equipment Net 4392 non-null float64

24 Total assets 4392 non-null float64

25 Total current liabilities 4392 non-null float64

26 Total liabilities 4392 non-null float64

27 Retained earnings (deficit) 4392 non-null float64

28 Total shareholders equity 4392 non-null float64

29 Other Assets 4392 non-null float64

30 Other Liabilities 4392 non-null float64

31 Depreciation & Amortization 4392 non-null float64

32 Operating Cash Flow 4392 non-null float64

33 Capital Expenditure 4392 non-null float64

34 Investing Cash flow 4392 non-null float64

35 Financing Cash Flow 4392 non-null float64

36 Net cash flow / Change in cash 4392 non-null float64

37 Free Cash Flow 4392 non-null float64

38 assetTurnover 4392 non-null float64

39 currentRatio 4392 non-null float64

40 quickRatio 4392 non-null float64

41 cashRatio 4392 non-null float64

42 operatingCashFlowPerShare 4392 non-null float64

43 cashPerShare 4392 non-null float64

44 Operating Cash Flow per Share 4392 non-null float64

45 Cash per Share 4392 non-null float64

46 Shareholders Equity per Share 4392 non-null float64

47 Income Quality 4392 non-null float64

48 Tangible Asset Value 4392 non-null float64

49 Net Current Asset Value 4392 non-null float64

50 Capex per Share 4392 non-null float64

51 Gross Profit Growth 4392 non-null float64

52 EBIT Growth 4392 non-null float64

53 Operating Income Growth 4392 non-null float64

54 Net Income Growth 4392 non-null float64

55 EPS Growth 4392 non-null float64

56 EPS Diluted Growth 4392 non-null float64

57 Weighted Average Shares Diluted Growth 4392 non-null float64

58 Operating Cash Flow growth 4392 non-null float64

59 Asset Growth 4392 non-null float64

60 SG&A Expenses Growth 4392 non-null float64

61 Sector 4392 non-null object

62 Sector_right 4392 non-null object

63 Class 4392 non-null int64

64 2019 PRICE VAR [%] 4392 non-null float64

dtypes: float64(62), int64(1), object(2)

memory usage: 2.3+ MB

Revenue
Revenue

Growth
Gross Profit

SG&A

Expense

Operating

Expenses

count 4.392000e+03 4392.000000 4.392000e+03 4.392000e+03 4.392000e+03

mean 3.431959e+09 0.135713 1.429657e+09 6.163775e+08 9.916391e+08

std 7.304752e+09 0.298810 3.241932e+09 1.368804e+09 2.177880e+09

min 0.000000e+00 -0.409488 0.000000e+00 8.908962e+05 4.198818e+06

25% 6.584545e+07 0.000000 3.737700e+07 2.170000e+07 4.624375e+07

50% 5.200504e+08 0.078492 2.384675e+08 1.040695e+08 2.017610e+08

75% 2.577958e+09 0.184950 1.025554e+09 5.037902e+08 7.931652e+08

max 3.366963e+10 1.248900 1.596702e+10 6.754875e+09 1.091602e+10

8 rows × 63 columns

print(df_out.columns)

print(len(df_out.columns))

Out[74]:

In [75]:

Index(['Revenue', 'Revenue Growth', 'Gross Profit', 'SG&A Expense',

 'Operating Expenses', 'Operating Income', 'Earnings before Tax',

 'Net Income', 'Net Income Com', 'EPS', 'EPS Diluted',

 'Weighted Average Shs Out', 'Weighted Average Shs Out (Dil)',

 'Gross Margin', 'EBIT Margin', 'EBITDA', 'EBIT', 'Consolidated Incom

e',

 'Earnings Before Tax Margin', 'Net Profit Margin',

 'Cash and cash equivalents', 'Cash and short-term investments',

 'Total current assets', 'Property, Plant & Equipment Net',

 'Total assets', 'Total current liabilities', 'Total liabilities',

 'Retained earnings (deficit)', 'Total shareholders equity',

 'Other Assets', 'Other Liabilities', 'Depreciation & Amortization',

 'Operating Cash Flow', 'Capital Expenditure', 'Investing Cash flow',

 'Financing Cash Flow', 'Net cash flow / Change in cash',

 'Free Cash Flow', 'assetTurnover', 'currentRatio', 'quickRatio',

 'cashRatio', 'operatingCashFlowPerShare', 'cashPerShare',

 'Operating Cash Flow per Share', 'Cash per Share',

 'Shareholders Equity per Share', 'Income Quality',

 'Tangible Asset Value', 'Net Current Asset Value', 'Capex per Share',

 'Gross Profit Growth', 'EBIT Growth', 'Operating Income Growth',

 'Net Income Growth', 'EPS Growth', 'EPS Diluted Growth',

 'Weighted Average Shares Diluted Growth', 'Operating Cash Flow growt

h',

 'Asset Growth', 'SG&A Expenses Growth', 'Sector', 'Sector_right',

 'Class', '2019 PRICE VAR [%]'],

 dtype='object')

65

Here, we use SMOTE to oversample and balance our classes --- SMOTE is an

improved alternative to oversampling, which finds points that are closer in

feature space, drawing a line between these points, and generating new data

points along the line. We see from the plot that this new dataset,

'df_out_balanced', is balanced now. We will also run all of our models with the

original dataset, in case SMOTE introduces too much noise.

df_out2 = df_out.drop(['Sector', 'Sector_right'], axis=1)

SMOTE oversampling

sm = SMOTE(random_state=42)

X_res, y_res = sm.fit_resample(df_out2.drop('Class', axis=1), df_out2['Class

df_out2 = pd.concat([pd.DataFrame(X_res), pd.DataFrame(y_res, columns=['Clas

df_out2['Class'].value_counts().plot(kind='bar')

plt.title('Class Counts')

plt.xlabel('Class')

plt.ylabel('Count')

plt.show()

In [76]:

In [77]:

In [78]:

Undersampling

rus = RandomUnderSampler(random_state=42)

X_res, y_res = rus.fit_resample(df_out.drop('Class', axis=1), df_out['Class'

df_out3 = pd.concat([pd.DataFrame(X_res), pd.DataFrame(y_res, columns=['Clas

df_out3['Class'].value_counts().plot(kind='bar')

plt.title('Class Counts')

plt.xlabel('Class')

plt.ylabel('Count')

plt.show()

In [79]:

In [80]:

df_out3 = df_out3.drop(['Sector', 'Sector_right'], axis=1)

print(df_out.shape)

print(df_out2.shape)

print(df_out3.shape)

(4392, 65)

(6092, 63)

(2692, 63)

Part I: Basic Models

Return to contents

The main modelling question we are trying to solve is predicting the

classification of a stock with its financial indicators (aka whether or not a stock

price increased or decreased). First, we will do feature selection, and then we

test 2 main basic models, knn/logistic regression and decision trees. Within these

models, we will do fine-tuning as well as use various methods to identify feature

importance.

Here is our model pipeline for our basic models:

In [81]:

In [82]:

Model Pipeline

Feature Selection

Return to contents

After taking care of data missingness and outliers, we are left with 63 columns,

out of which 61 are financial indicators (and thus predictors). However, many of

these predictors are highly correlated, so we further cut the number of predictors

using feature selection, in all three of our dataframes (undersampling,

oversampling, and original). To do this, we grouped features by features that are

correlated by more than 0.90, and kept only one feature out of each of these

groups to reduce redundancy. This left us with 41 predictors.

Select only numeric columns for correlation matrix

numeric_df_out = df_out.select_dtypes(include=[np.number])

numeric_df_out2 = df_out2.select_dtypes(include=[np.number])

numeric_df_out3 = df_out3.select_dtypes(include=[np.number])

Create correlation matrix for each dataframe

correlation_matrix = numeric_df_out.corr().abs()

correlation_matrix2 = numeric_df_out2.corr().abs()

correlation_matrix3 = numeric_df_out3.corr().abs()

Select upper triangle of correlation matrix

upper = correlation_matrix.where(np.triu(np.ones(correlation_matrix.shape),

upper2 = correlation_matrix2.where(np.triu(np.ones(correlation_matrix2.shape

upper3 = correlation_matrix3.where(np.triu(np.ones(correlation_matrix3.shape

Find index of feature columns with correlation greater than 0.90

to_drop = [column for column in upper.columns if any(upper[column] > 0.90)]

to_drop2 = [column for column in upper2.columns if any(upper2[column] > 0.90

to_drop3 = [column for column in upper3.columns if any(upper3[column] > 0.90

Keep one feature from each group of highly correlated features

for group in to_drop:

 if isinstance(group, list):

 group.remove(group[0])

for group in to_drop2:

 if isinstance(group, list):

 group.remove(group[0])

for group in to_drop3:

 if isinstance(group, list):

 group.remove(group[0])

Drop the remaining highly correlated features from each dataframe

df_out = df_out.drop(df_out[to_drop], axis=1)

df_out2 = df_out2.drop(df_out2[to_drop2], axis=1)

df_out3 = df_out3.drop(df_out3[to_drop3], axis=1)

In [83]:

For original dataframe:

for column in to_drop:

 correlated = upper[upper[column] > 0.90].index.tolist()

 print(f"For df_out, dropped {column}, which was highly correlated with:

For df_out, dropped Operating Expenses, which was highly correlated with:

['Gross Profit', 'SG&A Expense']

For df_out, dropped Earnings before Tax, which was highly correlated with:

['Operating Income']

For df_out, dropped Net Income, which was highly correlated with: ['Operatin

g Income', 'Earnings before Tax']

For df_out, dropped Net Income Com, which was highly correlated with: ['Oper

ating Income', 'Earnings before Tax', 'Net Income']

For df_out, dropped EPS Diluted, which was highly correlated with: ['EPS']

For df_out, dropped Weighted Average Shs Out (Dil), which was highly correla

ted with: ['Weighted Average Shs Out']

For df_out, dropped EBITDA, which was highly correlated with: ['Gross Profi

t', 'Operating Income', 'Earnings before Tax', 'Net Income', 'Net Income Co

m']

For df_out, dropped EBIT, which was highly correlated with: ['Operating Inco

me', 'Earnings before Tax', 'Net Income', 'Net Income Com', 'EBITDA']

For df_out, dropped Consolidated Income, which was highly correlated with:

['Operating Income', 'Earnings before Tax', 'Net Income', 'Net Income Com',

'EBITDA', 'EBIT']

For df_out, dropped Earnings Before Tax Margin, which was highly correlated

with: ['EBIT Margin']

For df_out, dropped Net Profit Margin, which was highly correlated with: ['E

BIT Margin', 'Earnings Before Tax Margin']

For df_out, dropped Cash and short-term investments, which was highly correl

ated with: ['Cash and cash equivalents']

For df_out, dropped Total liabilities, which was highly correlated with: ['T

otal assets']

For df_out, dropped Operating Cash Flow, which was highly correlated with:

['EBITDA', 'EBIT']

For df_out, dropped Operating Cash Flow per Share, which was highly correlat

ed with: ['operatingCashFlowPerShare']

For df_out, dropped Cash per Share, which was highly correlated with: ['cash

PerShare']

For df_out, dropped Tangible Asset Value, which was highly correlated with:

['Total assets', 'Total liabilities']

For df_out, dropped Net Current Asset Value, which was highly correlated wit

h: ['Total liabilities']

For df_out, dropped EPS Growth, which was highly correlated with: ['Net Inco

me Growth']

For df_out, dropped EPS Diluted Growth, which was highly correlated with:

['Net Income Growth', 'EPS Growth']

print(df_out.columns)

print(len(df_out.columns))

In [84]:

In [85]:

Index(['Revenue', 'Revenue Growth', 'Gross Profit', 'SG&A Expense',

 'Operating Income', 'EPS', 'Weighted Average Shs Out', 'Gross Margi

n',

 'EBIT Margin', 'Cash and cash equivalents', 'Total current assets',

 'Property, Plant & Equipment Net', 'Total assets',

 'Total current liabilities', 'Retained earnings (deficit)',

 'Total shareholders equity', 'Other Assets', 'Other Liabilities',

 'Depreciation & Amortization', 'Capital Expenditure',

 'Investing Cash flow', 'Financing Cash Flow',

 'Net cash flow / Change in cash', 'Free Cash Flow', 'assetTurnover',

 'currentRatio', 'quickRatio', 'cashRatio', 'operatingCashFlowPerShar

e',

 'cashPerShare', 'Shareholders Equity per Share', 'Income Quality',

 'Capex per Share', 'Gross Profit Growth', 'EBIT Growth',

 'Operating Income Growth', 'Net Income Growth',

 'Weighted Average Shares Diluted Growth', 'Operating Cash Flow growt

h',

 'Asset Growth', 'SG&A Expenses Growth', 'Sector', 'Sector_right',

 'Class', '2019 PRICE VAR [%]'],

 dtype='object')

45

#features = ['Revenue', 'Revenue Growth', 'Operating Income', 'EPS', 'Gross

features = [col for col in df_out.columns if col not in ['Sector', 'Sector_r

correlation_matrix = df_out[features].corr()

plt.figure(figsize=(10, 8))

sns.heatmap(correlation_matrix, annot=False, cmap='coolwarm')

plt.title('Correlation matrix of selected features')

plt.show()

In [86]:

In [87]:

We visualized the correlations between the leftover features once more, to see if

any features are still highly correlated. Although there are some that are still

pretty correlated, we will keep all of these features, as the discrepancies might

still be important.

selected_features_df = df_out[features]

selected_features_df.head()

In [88]:

Revenue
Revenue

Growth
Gross Profit

SG&A

Expense

Operating

Income

CMCSA 3.366963e+10 0.1115 1.596702e+10 6.754875e+09 5.184200e+09

KMI 1.414400e+10 0.0320 6.856000e+09 6.010000e+08 3.794000e+09

INTC 3.366963e+10 0.1289 1.596702e+10 6.750000e+09 5.184200e+09

MU 3.039100e+10 0.4955 1.596702e+10 8.130000e+08 5.184200e+09

GE 3.366963e+10 0.0285 1.596702e+10 6.754875e+09 -1.799788e+08 -

5 rows × 41 columns

K-nn & Logistic Regression

Return to contents

First, let us fit a logistic regression model to predict whether a stock will increase

or decrease from revenue alone, just as a baseline model. We will also fit this

model on all three datasets we have --- the original one, the SMOTE one, and the

undersampled one, for comparison.

X = df_out[features]

y = df_out['Class']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ran

Fit the logistic regression model

logit1 = LogisticRegression(max_iter=1000)

logit1.fit(X_train[['Revenue']], y_train)

Store the learned parameters

logit1_beta0 = logit1.intercept_[0]

logit1_beta1 = logit1.coef_[0][0]

Predict on the train and test sets

y_train_pred = logit1.predict(X_train[['Revenue']])

y_test_pred = logit1.predict(X_test[['Revenue']])

Calculate and store the train and test classification accuracies

acc_train_logit1 = accuracy_score(y_train, y_train_pred)

acc_test_logit1 = accuracy_score(y_test, y_test_pred)

print("LOGISTIC REGRESSION FOR ORIGINAL DATASET")

print("Learned Parameters:")

print("Intercept: ", logit1_beta0)

print("Coefficient: ", logit1_beta1)

print("\nClassification Accuracies:")

Out[88]:

In [89]:

In [90]:

In [91]:

print("Train Accuracy: ", acc_train_logit1)

print("Test Accuracy: ", acc_test_logit1)

LOGISTIC REGRESSION FOR ORIGINAL DATASET

Learned Parameters:

Intercept: 2.6749427288409396e-19

Coefficient: 1.1517404119857235e-10

Classification Accuracies:

Train Accuracy: 0.6945630515229149

Test Accuracy: 0.689419795221843

features_without_capex_quickratio = [feature for feature in features if feat

X2 = df_out2[features_without_capex_quickratio]

y2 = df_out2['Class']

X_train2, X_test2, y_train2, y_test2 = train_test_split(X2, y2, test_size=0.

Fit the logistic regression model

logit1_2 = LogisticRegression(max_iter=1000)

logit1_2.fit(X_train2[['Revenue']], y_train2)

Store the learned parameters

logit1_beta0_2 = logit1_2.intercept_[0]

logit1_beta1_2 = logit1_2.coef_[0][0]

Predict on the train and test sets

y_train_pred2 = logit1_2.predict(X_train2[['Revenue']])

y_test_pred2 = logit1_2.predict(X_test2[['Revenue']])

Calculate and store the train and test classification accuracies

acc_train_logit1_2 = accuracy_score(y_train2, y_train_pred2)

acc_test_logit1_2 = accuracy_score(y_test2, y_test_pred2)

print("LOGISTIC REGRESSION FOR OVERSAMPLED DATASET")

print("Learned Parameters:")

print("Intercept: ", logit1_beta0_2)

print("Coefficient: ", logit1_beta1_2)

print("\nClassification Accuracies:")

print("Train Accuracy: ", acc_train_logit1_2)

print("Test Accuracy: ", acc_test_logit1_2)

LOGISTIC REGRESSION FOR OVERSAMPLED DATASET

Learned Parameters:

Intercept: -1.2284368840404984e-20

Coefficient: 4.526647260651638e-11

Classification Accuracies:

Train Accuracy: 0.5005130309870717

Test Accuracy: 0.5365053322395406

features_without_unwanted = [feature for feature in features if feature not

X3 = df_out3[features_without_unwanted]

y3 = df_out3['Class']

X_train3, X_test3, y_train3, y_test3 = train_test_split(X3, y3, test_size=0.

Fit the logistic regression model

logit1_3 = LogisticRegression(max_iter=1000)

In [92]:

In [93]:

logit1_3.fit(X_train3[['Revenue']], y_train3)

Store the learned parameters

logit1_beta0_3 = logit1_3.intercept_[0]

logit1_beta1_3 = logit1_3.coef_[0][0]

Predict on the train and test sets

y_train_pred3 = logit1_3.predict(X_train3[['Revenue']])

y_test_pred3 = logit1_3.predict(X_test3[['Revenue']])

Calculate and store the train and test classification accuracies

acc_train_logit1_3 = accuracy_score(y_train3, y_train_pred3)

acc_test_logit1_3 = accuracy_score(y_test3, y_test_pred3)

print("LOGISTIC REGRESSION FOR UNDERSAMPLED DATASET")

print("Learned Parameters:")

print("Intercept: ", logit1_beta0_3)

print("Coefficient: ", logit1_beta1_3)

print("\nClassification Accuracies:")

print("Train Accuracy: ", acc_train_logit1_3)

print("Test Accuracy: ", acc_test_logit1_3)

LOGISTIC REGRESSION FOR UNDERSAMPLED DATASET

Learned Parameters:

Intercept: -1.2233649397135117e-20

Coefficient: 4.720783021288649e-11

Classification Accuracies:

Train Accuracy: 0.5290292614955876

Test Accuracy: 0.5009276437847866

classification_accuracies = pd.DataFrame({

 'Original': [acc_train_logit1, acc_test_logit1],

 'Oversampling (SMOTE)': [acc_train_logit1_2, acc_test_logit1_2],

 'Random Undersampling': [acc_train_logit1_3, acc_test_logit1_3]

}, index=['Train Accuracy', 'Test Accuracy'])

print(tabulate(classification_accuracies, headers='keys', tablefmt='psql'))

+----------------+------------+------------------------+--------------------

----+

| | Original | Oversampling (SMOTE) | Random Undersampl

ing |

|----------------+------------+------------------------+--------------------

----|

| Train Accuracy | 0.694563 | 0.500513 | 0.529

029 |

| Test Accuracy | 0.68942 | 0.536505 | 0.500

928 |

+----------------+------------+------------------------+--------------------

----+

From these results, we see that both the train and test accuracy are much less

accurate for the SMOTE and Random Undersampling dataset than the original

dataset, indicating that the altered datasets might be introducing too much

noise, or giving too little information. Since the test accuracy of the original

In [94]:

model is also doing much better, we decided to not use the oversampled or

undersampled dataset and stick with out original dataset.

Next, let us fit a logistic regression model predicting stock increase or decrease

with just 'Revenue' and 'EPS'.

Fit the logistic regression model with 'Revenue' and 'EPS'

logit2 = LogisticRegression(max_iter=1000)

logit2.fit(X_train[['Revenue', 'EPS']], y_train)

Store the learned parameters

logit2_beta0 = logit2.intercept_[0]

logit2_beta1, logit2_beta2 = logit2.coef_[0]

Predict on the train and test sets

y_train_pred2 = logit2.predict(X_train[['Revenue', 'EPS']])

y_test_pred2 = logit2.predict(X_test[['Revenue', 'EPS']])

Calculate and store the train and test classification accuracies

acc_train_logit2 = accuracy_score(y_train, y_train_pred2)

acc_test_logit2 = accuracy_score(y_test, y_test_pred2)

print("Learned Parameters:")

print("Intercept: ", logit2_beta0)

print("Coefficient for Revenue: ", logit2_beta1)

print("Coefficient for Revenue Growth: ", logit2_beta2)

print("\nClassification Accuracies:")

print("Train Accuracy: ", acc_train_logit2)

print("Test Accuracy: ", acc_test_logit2)

Learned Parameters:

Intercept: 2.6749427288426046e-19

Coefficient for Revenue: 1.1517404119857249e-10

Coefficient for Revenue Growth: 7.1411856671072815e-19

Classification Accuracies:

Train Accuracy: 0.694847708511244

Test Accuracy: 0.7030716723549488

Next, let's fit a full logistic regression model predicting stock increase or

decrease with all 16 features.

logit3 = LogisticRegression(max_iter=1000)

logit3.fit(X_train, y_train)

Store the learned parameters

logit3_beta = logit3.coef_[0]

logit3_intercept = logit3.intercept_[0]

Predict on the train and test sets

y_train_pred3 = logit3.predict(X_train)

y_test_pred3 = logit3.predict(X_test)

Calculate and store the train and test classification accuracies

In [95]:

In [96]:

acc_train_logit3 = accuracy_score(y_train, y_train_pred3)

acc_test_logit3 = accuracy_score(y_test, y_test_pred3)

print("Learned Parameters:")

print("Intercept: ", logit3_intercept)

print("Coefficients: ", logit3_beta)

print("\nClassification Accuracies:")

print("Train Accuracy: ", acc_train_logit3)

print("Test Accuracy: ", acc_test_logit3)

Learned Parameters:

Intercept: 8.587470417885868e-17

Coefficients: [2.11649912e-11 4.53800922e-18 -2.46046196e-10 2.65053659e

-10

 6.74247233e-10 2.81759925e-16 8.17598325e-10 5.25853156e-17

 7.56372164e-17 2.77939497e-11 4.60628217e-11 2.12933417e-11

-2.07431601e-11 9.18128295e-12 -7.03577643e-11 8.61268734e-11

-2.55722700e-12 2.65898432e-10 3.52371679e-10 6.09701599e-10

-2.34592552e-10 3.66955255e-10 1.07795957e-10 1.86159317e-10

 4.37614167e-17 1.83470807e-16 1.28022630e-16 5.50320635e-17

 2.06314656e-16 -6.48810737e-17 1.09848096e-15 1.31386599e-16

-6.34924401e-17 7.71723418e-18 2.59854321e-17 1.68422823e-17

 5.83378390e-17 -6.67853884e-18 2.06992884e-17 7.86767973e-18

 7.37740909e-18]

Classification Accuracies:

Train Accuracy: 0.6945630515229149

Test Accuracy: 0.6951080773606371

Next, we scaled our predictors, so that we can weigh our parameters similarly in

future models. This also helps for features that have completely different scales,

like revenue vs current ratio.

Initialize a scaler

scaler = StandardScaler()

Fit the scaler on the training data

scaler.fit(X_train)

Transform both the train and test data

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

Next, we fit a well-tuned -NN classification model with main effects of all 16

predictors in it, using 10-fold cross-validation with classification accuracy as the

scoring metric. After trying many values, we plot the training and validation

scores of the model at each value of , and then chose the with the validation

accuracy.

ks = [1, 3, 5, 9, 15, 21, 51, 71, 101, 131, 171, 201]

mean_train_scores = []

mean_val_scores = []

for k in ks:

In [97]:

k

k

k k

In [98]:

 knn_model = KNeighborsClassifier(n_neighbors=k)

 scores = cross_val_score(knn_model, X_train, y_train, cv=10, scoring='ac

 mean_train_scores.append(scores.mean())

 knn_model.fit(X_train, y_train)

 val_score = knn_model.score(X_test, y_test)

 mean_val_scores.append(val_score)

Plotting the scores

plt.figure(figsize=(10, 5))

plt.plot(ks, mean_train_scores, label='Train')

plt.plot(ks, mean_val_scores, label='Validation')

plt.xlabel('k')

plt.ylabel('Accuracy')

plt.title("Value of k vs. Cross Validation Mean MSE for KNN Classifier Model

plt.legend()

plt.show()

Storing the best k and the classification accuracy on train and test

best_k = ks[mean_val_scores.index(max(mean_val_scores))]

knn_train_acc = max(mean_train_scores)

knn_test_acc = max(mean_val_scores)

print(f"Best k: {best_k}")

print(f"Train accuracy: {knn_train_acc}")

print(f"Test accuracy: {knn_test_acc}")

Best k: 71

Train accuracy: 0.709648569023569

Test accuracy: 0.726962457337884

Next, we train and test a full logistic regression model with all features included,

with scaling.

In [99]:

In [100…

In [101…

logit4 = LogisticRegression(max_iter=1000)

logit4.fit(X_train, y_train)

Store the learned parameters

logit4_beta = logit3.coef_[0]

logit4_intercept = logit3.intercept_[0]

Predict on the train and test sets

y_train_pred4 = logit4.predict(X_train)

y_test_pred4 = logit4.predict(X_test)

Calculate and store the train and test classification accuracies

acc_train_logit4 = accuracy_score(y_train, y_train_pred4)

acc_test_logit4 = accuracy_score(y_test, y_test_pred4)

print("Learned Parameters:")

print("Intercept: ", logit4_intercept)

print("Coefficients: ", logit4_beta)

print("\nClassification Accuracies:")

print("Train Accuracy: ", acc_train_logit4)

print("Test Accuracy: ", acc_test_logit4)

Learned Parameters:

Intercept: 8.587470417885868e-17

Coefficients: [2.11649912e-11 4.53800922e-18 -2.46046196e-10 2.65053659e

-10

 6.74247233e-10 2.81759925e-16 8.17598325e-10 5.25853156e-17

 7.56372164e-17 2.77939497e-11 4.60628217e-11 2.12933417e-11

-2.07431601e-11 9.18128295e-12 -7.03577643e-11 8.61268734e-11

-2.55722700e-12 2.65898432e-10 3.52371679e-10 6.09701599e-10

-2.34592552e-10 3.66955255e-10 1.07795957e-10 1.86159317e-10

 4.37614167e-17 1.83470807e-16 1.28022630e-16 5.50320635e-17

 2.06314656e-16 -6.48810737e-17 1.09848096e-15 1.31386599e-16

-6.34924401e-17 7.71723418e-18 2.59854321e-17 1.68422823e-17

 5.83378390e-17 -6.67853884e-18 2.06992884e-17 7.86767973e-18

 7.37740909e-18]

Classification Accuracies:

Train Accuracy: 0.7147736976942783

Test Accuracy: 0.7087599544937428

Initialize lists to store results and coefficients

logit_lasso_train_accs = []

logit_lasso_test_accs = []

logit_lasso_coefs = []

Define the C values to try

Cs = [1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4]

Loop over the C values

for C in Cs:

 # Fit a Lasso-like logistic regression model

 logit_lasso = LogisticRegression(C=C, penalty='l1', solver='saga', max_i

 logit_lasso.fit(X_train, y_train)

 # Predict on the train and test sets

In [102…

In [103…

 y_train_pred_lasso = logit_lasso.predict(X_train)

 y_test_pred_lasso = logit_lasso.predict(X_test)

 # Calculate and store the train and test classification accuracies

 logit_lasso_train_acc = accuracy_score(y_train, y_train_pred_lasso)

 logit_lasso_test_acc = accuracy_score(y_test, y_test_pred_lasso)

 # Store the results and coefficients

 logit_lasso_train_accs.append(logit_lasso_train_acc)

 logit_lasso_test_accs.append(logit_lasso_test_acc)

 logit_lasso_coefs.append(logit_lasso.coef_)

Find the index of the best test accuracy

best_index = np.argmax(logit_lasso_test_accs)

print("Best C value: ", Cs[best_index])

Print the best results

print("Best Train Accuracy: ", logit_lasso_train_accs[best_index])

print("Best Test Accuracy: ", logit_lasso_test_accs[best_index])

print("Best Coefficients: ", logit_lasso_coefs[best_index])

Best C value: 0.1

Best Train Accuracy: 0.7136350697409621

Best Test Accuracy: 0.7178612059158134

Best Coefficients: [[0.16745119 -0.08065373 -0.02658166 0. 0.

0.46664148

 0. 0.09336308 0.16518824 0.00273608 0.13278026 0.

 0. 0. -0.05100065 0. 0. 0.27953223

 0. 0.0696631 -0.05518079 0.11362988 0.00343962 0.04548695

 -0.24943294 -0.06975951 -0.02966424 0. -0.01525486 -0.14693989

 0.02731399 0.02032016 0.08170126 0.00806167 -0.05438753 0.

 0. -0.15216239 0. 0.00968026 0.04806951]]

Create a DataFrame for non-zero coefficients

non_zero_coefs = pd.DataFrame({'Feature': features, 'Coefficient': logit_las

non_zero_coefs = non_zero_coefs[non_zero_coefs['Coefficient'] != 0]

Sort the DataFrame by coefficient value in ascending order

non_zero_coefs = non_zero_coefs.sort_values('Coefficient', ascending=False)

print("NONZERO COEFFICIENTS")

Print the DataFrame

print(non_zero_coefs)

In [104…

NONZERO COEFFICIENTS

 Feature Coefficient

5 EPS 0.466641

17 Other Liabilities 0.279532

0 Revenue 0.167451

8 EBIT Margin 0.165188

10 Total current assets 0.132780

21 Financing Cash Flow 0.113630

7 Gross Margin 0.093363

32 Capex per Share 0.081701

19 Capital Expenditure 0.069663

40 SG&A Expenses Growth 0.048070

23 Free Cash Flow 0.045487

30 Shareholders Equity per Share 0.027314

31 Income Quality 0.020320

39 Asset Growth 0.009680

33 Gross Profit Growth 0.008062

22 Net cash flow / Change in cash 0.003440

9 Cash and cash equivalents 0.002736

28 operatingCashFlowPerShare -0.015255

2 Gross Profit -0.026582

26 quickRatio -0.029664

14 Retained earnings (deficit) -0.051001

34 EBIT Growth -0.054388

20 Investing Cash flow -0.055181

25 currentRatio -0.069760

1 Revenue Growth -0.080654

29 cashPerShare -0.146940

37 Weighted Average Shares Diluted Growth -0.152162

24 assetTurnover -0.249433

Create a DataFrame for zero coefficients

zero_coefs = pd.DataFrame({'Feature': features, 'Coefficient': logit_lasso_c

zero_coefs = zero_coefs[zero_coefs['Coefficient'] == 0]

Sort the DataFrame by coefficient value in ascending order

zero_coefs = zero_coefs.sort_values('Coefficient', ascending=False)

print("ZERO COEFFICIENTS")

Print the DataFrame

print(zero_coefs)

In [105…

ZERO COEFFICIENTS

 Feature Coefficient

3 SG&A Expense 0.0

4 Operating Income 0.0

6 Weighted Average Shs Out 0.0

11 Property, Plant & Equipment Net 0.0

12 Total assets 0.0

13 Total current liabilities 0.0

15 Total shareholders equity 0.0

16 Other Assets 0.0

18 Depreciation & Amortization 0.0

27 cashRatio 0.0

35 Operating Income Growth 0.0

36 Net Income Growth 0.0

38 Operating Cash Flow growth 0.0

Get coefficients from the logistic regression model

coefficients = logit_lasso.coef_[0]

coef_df = pd.DataFrame({'feature': features, 'coefficient': coefficients})

coef_df = coef_df.sort_values('coefficient', ascending=False)

Plot the coefficients

plt.figure(figsize=(10, 6))

plt.barh(coef_df['feature'], coef_df['coefficient'])

plt.xlabel('Coefficient')

plt.ylabel('Feature')

plt.title('Feature Importance')

plt.gca().invert_yaxis()

plt.yticks(fontsize=8) # Adjust the y-ticks to be slightly farther apart

plt.show()

Store all the train and test accuracies as well as the model description i

model_results = pd.DataFrame({

 'Model': ['Logistic Regression (just Revenue)', 'Logistic Regression (Re

 'Train Accuracy': [acc_train_logit1, acc_train_logit2, acc_train_logit3,

 'Test Accuracy': [acc_test_logit1, acc_test_logit2, acc_test_logit3, acc

})

In [106…

In [107…

model_results

Model Train Accuracy Test Accuracy

0 Logistic Regression (just Revenue) 0.694563 0.689420

1 Logistic Regression (Revenue + EPS) 0.694848 0.703072

2 Logistic Regression (all features, no scaling) 0.694563 0.695108

3 Logistic Regression (all features, scaled) 0.714774 0.708760

4 Logistic Regression with Lasso 0.713635 0.717861

5 KNN (k=71) 0.709649 0.726962

After training logistic regression models on various parameters, with scaled and

unscaled features, and with lasso regression, we see that the best performing

logistic regression models (based on test accuracy), is the logistic regression

model on all scaled features with lasso regulation, with a test accuracy of

71.79%. We see that the logistic regression model based on just revenue and

EPS and the logistic regression model based on all scaled features also did well,

with test accuracies of 70.31% and 70.87%, respectively.

From the lasso regularization, 13 predictors came out with coefficients of 0,

including Operating Income, Total current liabilities, and Operating Income

Growth, which indicates that they might be less signigicant as predictors of stock

increase or decrease than other features. Additionally, from plotting the

coefficients of both the logistic regression and the logistic regression with lasso,

we see that EPS and Revenue are the two features with the greatest coefficients,

indicating that an increase in EPS or Revenue increases the odds of a stock

increasing the most. This generally makes sense, as EPS (Earnings Per Share) is

a direct measure of a company's profitability on a per-share basis, and high EPS

can incease investor confidence in a company, thus leading to increase in stock

prices. Revenue, as the first raw measure of how much money is making, also

makes sense as a strong positive predictor of a stock's increase, as revenue is

not only a easily accessible comparison metric, but also indicator of business

growth and investor confidence. However, a more interesting result is that Gross

Profit came out as the strongest predictor of stock price decrease, which doesn't

make too much intuitive sense, since Gross Profit is another indicator of a

business' growth and earnings. However, there could be some randomness

involved in this, or other context --- for example, increase in gross profit could

come from one-time events or non-operational activities like selling assets,

which could negatively impact stock price.

We also ran one k-nn model on the features, choosing the k that yielded the

highest validation score, which was k=71. This k-nn model actually performed

Out[107…

better than all of the logistic regression models in terms of test accuracy, which

may be because k-nn models can capture complex decision boundaries, which is

relevant here because of the number of features we have. However, it was still

important to run the logistic regression model, as it has more interpretable

coefficients that can tell us the predicting power of each feature.

Decision Trees

Return to contents

Next, we evaluate and tune a decision tree classifier along with regularization

methods like bagging, random forest, and boosting. This provides an alternative

from logistic regression that can capture complex decision boundaries, which

may be useful with the complexity of our features and data.

First, we fit a decision tree classifier to the data with 20 different depths,

choosing the best performing depth as our result.

train_scores = []

cvmeans = []

cvstds = []

Fit a decision tree to the entire training set for each depth from 1 to 20

for depth in range(1, 21):

 dt = DecisionTreeClassifier(max_depth=depth, random_state=0)

 dt.fit(X_train, y_train)

 # Evaluate on the entire training set

 train_scores.append(dt.score(X_train, y_train))

 # Perform 5-fold cross-validation with the entire training set

 cv_scores = cross_val_score(dt, X_train, y_train, cv=5)

 cvmeans.append(cv_scores.mean())

 cvstds.append(cv_scores.std())

Create a range for the depths

depths = range(1, 21)

Plot 1: All scores

plt.figure(figsize=(10, 6))

plt.plot(depths, train_scores, label='Train scores')

plt.plot(depths, cvmeans, label='CV mean scores')

plt.fill_between(depths, np.array(cvmeans) - 2*np.array(cvstds), np.array(cv

plt.xticks(np.arange(1, 21, step=1)) # Set x-ticks from 1 to 20

plt.legend()

plt.xlabel('Tree Depth')

plt.ylabel('Score')

plt.title('Train and CV scores for a Decision Tree with Different Tree Depth

plt.show()

In [108…

In [109…

Plot 2: Focus on validation performance

plt.figure(figsize=(10, 6))

plt.plot(depths, train_scores, label='Train scores')

plt.plot(depths, cvmeans, label='CV mean scores')

plt.fill_between(depths, np.array(cvmeans) - 2*np.array(cvstds), np.array(cv

plt.ylim(0.63, 0.72)

plt.xticks(np.arange(1, 21, step=1)) # Set x-ticks from 1 to 20

plt.legend()

plt.xlabel('Tree Depth')

plt.ylabel('Score')

plt.title('CV scores for a Decision Tree with Different Tree Depths')

plt.show()

best_cv_depth = np.argmax(cvmeans) + 1 # Add 1 because depths start from 1

Justification: The best depth is the one that maximizes the mean cross-val

Fit a new decision tree on the entire training data using the best depth

best_cv_tree = DecisionTreeClassifier(max_depth=best_cv_depth, random_state=

best_cv_tree.fit(X_train, y_train)

Store the train and test accuracies

best_cv_tree_train_score = best_cv_tree.score(X_train, y_train)

best_cv_tree_test_score = best_cv_tree.score(X_test, y_test)

Print the best depth and accuracies

print(f"Best depth: {best_cv_depth}")

print(f"Train accuracy: {best_cv_tree_train_score}")

print(f"Test accuracy: {best_cv_tree_test_score}")

Best depth: 3

Train accuracy: 0.7258753202391118

Test accuracy: 0.7076222980659841

We see that a tree depth of 3 yields the best validation accuracy, which makes

sense because as the depth increases, the tree begins to overfit.

Next, we use bagging on the most overfit depth (18) to help correct the

overfitting of the decision tree and reduce the variance of the model.

Create a BaggingClassifier with a deep DecisionTreeClassifier

bagging_clf = BaggingClassifier(DecisionTreeClassifier(max_depth=18, random_

bagging_clf.fit(X_train, y_train)

In [110…

In [111…

Store the train and test accuracies

bagging_train_score = bagging_clf.score(X_train, y_train)

bagging_test_score = bagging_clf.score(X_test, y_test)

Print the accuracies

print(f"Train accuracy: {bagging_train_score}")

print(f"Test accuracy: {bagging_test_score}")

Train accuracy: 0.9988613720466838

Test accuracy: 0.726962457337884

We also fit a random forest classifier on the data, as another way of reducing

overfitting but this time introducing randomness into the model creation process.

Create a RandomForestClassifier with different number of trees

best_train_score, best_test_score = 0, 0

best_n_trees = 0

train_scores = []

cv_scores_list = []

cv_std_list = []

for n_trees in [50, 100, 150, 200, 250, 300]:

 random_forest_clf = RandomForestClassifier(n_estimators=n_trees, random_

 random_forest_clf.fit(X_train, y_train)

 # Perform cross-validation

 cv_scores = cross_val_score(random_forest_clf, X_train, y_train, cv=5)

 cv_mean = cv_scores.mean()

 cv_std = cv_scores.std()

 # Store the train score, cv score and cv std

 train_scores.append(random_forest_clf.score(X_train, y_train))

 cv_scores_list.append(cv_mean)

 cv_std_list.append(cv_std)

 # Check if the current cross-validation score is the best

 if cv_mean > best_test_score:

 best_test_score = cv_mean

 best_n_trees = n_trees

Fit the model with the best number of trees

random_forest_clf = RandomForestClassifier(n_estimators=best_n_trees, random

random_forest_clf.fit(X_train, y_train)

Store the train and test accuracies

random_forest_train_score = random_forest_clf.score(X_train, y_train)

random_forest_test_score = random_forest_clf.score(X_test, y_test)

Print the best number of trees and the corresponding test accuracy

print(f"Best number of trees: {best_n_trees}")

print(f"Best test accuracy: {random_forest_test_score}")

Best number of trees: 250

Best test accuracy: 0.7406143344709898

Plot the train and cross-validation scores

plt.figure(figsize=(10, 6))

In [112…

In [113…

In [122…

plt.plot([50, 100, 150, 200, 250, 300], cv_scores_list, 'o-', color="g", lab

plt.fill_between([50, 100, 150, 200, 250, 300], np.array(cv_scores_list) - n

 np.array(cv_scores_list) + np.array(cv_std_list), alpha=0.2

Create plot

plt.title("Validation Curve with Random Forest")

plt.xlabel("Number of Trees")

plt.ylim(0.71, 0.74)

plt.ylabel("Accuracy Score")

plt.tight_layout()

plt.legend(loc="best")

plt.show()

importances = random_forest_clf.feature_importances_

std = np.std([tree.feature_importances_ for tree in random_forest_clf.estima

indices = np.argsort(importances)[::-1]

Get the feature names

feature_names = X.columns

Plot the feature importances of the forest

plt.figure(figsize=(10, 6))

plt.title("Feature Importance (Random Forest)")

plt.barh(range(X_train.shape[1]), importances[indices][::-1], # Reverse the

 color="lightblue", xerr=std[indices][::-1], align="center", capsize=2

plt.yticks(range(X_train.shape[1]), feature_names[indices][::-1], fontsize=8

plt.ylim([-1, X_train.shape[1]])

plt.show()

In [114…

Finally, we also fit a gradient boosting classifier on the data, as an iterative

model, to see if we can reduce variance in a different way.

Create a GradientBoostingClassifier

boosting_clf = GradientBoostingClassifier(n_estimators=100, random_state=0)

Define a grid of hyperparameters to search

param_grid = {

 'learning_rate': [0.01, 0.1, 0.2, 0.5, 1.0]

}

Use GridSearchCV to find the best learning rate

grid_search = GridSearchCV(boosting_clf, param_grid, cv=5)

grid_search.fit(X_train, y_train)

Get the best parameters

best_params = grid_search.best_params_

print(f"Best parameters: {best_params}")

Fit the model with the best parameters

boosting_clf = GradientBoostingClassifier(n_estimators=100, random_state=0,

boosting_clf.fit(X_train, y_train)

Store the train and test accuracies

boosting_train_score = boosting_clf.score(X_train, y_train)

boosting_test_score = boosting_clf.score(X_test, y_test)

Print the accuracies

print(f"Train accuracy: {boosting_train_score}")

print(f"Test accuracy: {boosting_test_score}")

Best parameters: {'learning_rate': 0.1}

Train accuracy: 0.8334756618274979

Test accuracy: 0.7337883959044369

In [115…

Create a DataFrame to store the accuracies

accuracies = pd.DataFrame({

 'Model': ['Best CV Depth DecisionTreeClassifier', 'BaggingClassifier', '

 'Train Accuracy': [best_cv_tree_train_score, bagging_train_score, random

 'Test Accuracy': [best_cv_tree_test_score, bagging_test_score, random_fo

})

accuracies

Model Train Accuracy Test Accuracy

0 Best CV Depth DecisionTreeClassifier 0.725875 0.707622

1 BaggingClassifier 0.998861 0.726962

2 RandomForestClassifier 1.000000 0.740614

3 GradientBoostingClassifier 0.833476 0.733788

The RandomForestClassifier model performed the best with a train accuracy of

0.9997 and a test accuracy of 0.7338. This might be due to the fact that

RandomForestClassifier is an ensemble learning method that operates by

constructing a multitude of decision trees at training time and outputting the

class that is the mode of the classes of the individual trees. This makes it a very

powerful model capable of handling a large dataset with high dimensionality.

The GradientBoostingClassifier also performed very well with a train accuracy of

0.833476 and a test accuracy of 0.733788. This model builds an additive model

in a forward stage-wise fashion; it allows for the optimization of arbitrary

differentiable loss functions -- thus, it is also a very powerful model when dealing

with large amounts of data and high dimensionality.

The BaggingClassifier had a very high train accuracy of 0.9974 but a slightly

lower test accuracy of 0.7235. This indicates that the model may have overfit

the training data. BaggingClassifier is an ensemble meta-estimator that fits base

classifiers each on random subsets of the original dataset and then aggregate

their individual predictions to form a final prediction. This can lead to high

variance if the base classifier is not robust enough.

The Best CV Depth DecisionTreeClassifier had the lowest train and test

accuracies of 0.7259 and 0.7076 respectively. Decision trees are simple to

understand and interpret, but they can easily overfit the data and have poor

prediction performance if the depth of the tree is not properly tuned.

Also, we took a look at the Random Forest model's ranking of feature

importance, shown in the bar graph above. Total assets was top, which is

interesting because total assets was eliminated during lasso regularization in the

logistic regression model. This result may not be completely accurate, though,

In [116…

Out[116…

since the standard error bar for this feature is so wide --- the results may be

skewed by outliers or just have high variance. It does make sense for total assets

to be a good predictors of stock price increase, but total assets can vary so much

across industry that it doesn't seem very accurate. Total current liabilities being a

strong predictor is also counterintuitive but actually makes some sense, as high

total current liabilities may indicate efficient use of capital (financing with debt

over equity), which has many tax benefits. EPS, the next highest predictor, was

the top predictor in the logistic regression with lasso, which strengthens its

argument as a strong predictor.

Part II: Advanced Models

Return to contents

Neural Networks

Return to contents

Finally, we trained neural networks on all of the original features (after

accounting for missingness and outliers). Since the models took much longer to

train, we added the code in separate files to the assignment.

We trained the following models:

model_bagging.py: neural network CV w/ bagging

model.py: neural network CV (with optional small parameters for shorter

training time)

model_parallel.py: neural network CV (with parallel computing to speed up

the process)

model_RF.py: neural network random forests CV

svm.py: SVM CV

General Model

Our general model.py file includes the base neural network we tried to

implement. The file includes a test implementation of GridSearchCV with a

neural network (with parameters hidden sizes and droupout rate). The next

section of code includes a much more extensive test, with these parameters

tested:

'''

param_grid = {

In [117…

 'lr': [0.01, 0.1, 0.001],

 'max_epochs': [10, 20, 30],

 'module__dropout_rate': [0.3, 0.5, 0.7],

 'module__hidden_sizes': [

 [64, 32],

 [128, 64, 32],

 [32, 32, 32],

 [256, 128, 64, 32],

 [64, 64, 64],

],

 'optimizer': [optim.Adam, optim.SGD, optim.RMSprop],

 'batch_size': [16, 32, 64],

 'module__num_layers': [2, 3, 4],

 'optimizer__weight_decay': [0.01, 0.001, 0.0001],

 'optimizer__momentum': [0.9, 0.95, 0.99],

 'module__activation_func': [F.relu, F.leaky_relu, F.elu, F.sigmoid],

}'''

"\nparam_grid = {\n 'lr': [0.01, 0.1, 0.001],\n 'max_epochs': [10, 2

0, 30],\n 'module__dropout_rate': [0.3, 0.5, 0.7],\n 'module__hidden_

sizes': [\n [64, 32],\n [128, 64, 32],\n [32, 32, 3

2],\n [256, 128, 64, 32], \n [64, 64, 64], \n],\n

'optimizer': [optim.Adam, optim.SGD, optim.RMSprop],\n 'batch_size': [1

6, 32, 64],\n 'module__num_layers': [2, 3, 4],\n 'optimizer__weight_d

ecay': [0.01, 0.001, 0.0001],\n 'optimizer__momentum': [0.9, 0.95, 0.9

9],\n 'module__activation_func': [F.relu, F.leaky_relu, F.elu, F.sigmoi

d],\n}"

With all these parameters, there are over 130,000 models that can be created.

The best five-fold CV model had the following parameters, with a test accuracy

of 0.7235, outperformed only by the random forest.

Batch Size: 32,

Learning Rate: 0.01,

Max Epochs: 20,

Dropout Rate: 0.3,

Hidden Sizes: [64, 32],

Number of Layers: 3,

Optimizer: <class 'torch.optim.sgd.SGD'>

We also modified the code in model_parallel.py to take advantage of parallel

processing to increase the training speed.

Neural Networks with Bagging

Next, we decided to try bagging in Neural Networks. We used the same approach

used in class, but with Neural Networks. The code allows the user to enter a list

of numbers of models, and then for each number, it runs a bagging model and

returns the test training.

Out[117…

After running this on 5, 10, 20, 30, 40, and 50 models, here was our result:

Number of Models Test Accuracy

5 0.6997

10 0.7144

20 0.7133

30 0.7076

40 0.7110

50 0.7110

60 0.7144

Neural Networks with Random Forests

Next, we implemented random forests in Neural Networks as well. We built onto

the approach used in class. The code interface works similar to that above, with

the user being able to enter their own list of numbers.

We trained RFs with 5, 10, 15, and 20 neural networks. Here are our results:

Number of Models Test Accuracy

5 0.7042

10 0.7224

15 0.7144

20 0.7144

Note on Bagging and Random Forests

Note that we no longer used CV Grid Search here. In the future, it might be

better if we introduce CV validation Grid Search in each training step. This would

likely increase the performance of the model!

Reflection

The results came to around 0.70-0.72 accuracy for each of these models, with

the standard neural network CV with 20 epochs performing the best at an

accuracy of 0.72.

Neural networks might be a good fit for this problem due to their ability to model

complex, non-linear relationships, which are common in financial data. They can

capture interactions between different financial indicators that simpler models

might miss. Additionally, neural networks can learn to recognize patterns in the

data, which can be particularly useful when predicting financial trends. However,

they can be computationally intensive and may require a large amount of data to

train effectively.

Despite their potential, the neural networks might not be performing as well in

this case due to several reasons. First, the complexity of these models can lead

to overfitting, especially if the network architecture is not properly designed.

Second, the training process of neural networks is computationally intensive and

was very slow. This can be a problem if the dataset is large or if the model needs

to be retrained frequently. Lastly, neural networks require a large amount of data

to train effectively. If the dataset is not large enough, the models may not be

able to learn the underlying patterns in the data, leading to poor performance.

Next, we will continue to explore these models and fine tune them to better

performance.

Support Vector Machine

We also took a crack at an SVM model! The impelmentation was very similar to

our base Neural Network CV Grid Search; we tested for these parameters:

'''

param_grid = {

 'C': [0.1, 1, 10],

 'gamma': [0.01, 0.1, 1],

 'kernel': ['linear', 'poly', 'rbf', 'sigmoid'],

 'degree': [2, 3, 4], # Only for poly kernel

 'coef0': [0.0, 1.0, 2.0], # Only for poly and sigmoid kernels

 'shrinking': [True, False],

 'tol': [1e-3, 1e-4, 1e-5],

 'class_weight': [None, 'balanced'],

 'decision_function_shape': ['ovo', 'ovr'],

}

'''

"\nparam_grid = {\n 'C': [0.1, 1, 10],\n 'gamma': [0.01, 0.1, 1],\n

'kernel': ['linear', 'poly', 'rbf', 'sigmoid'],\n 'degree': [2, 3, 4],

Only for poly kernel\n 'coef0': [0.0, 1.0, 2.0], # Only for poly and

sigmoid kernels\n 'shrinking': [True, False],\n 'tol': [1e-3, 1e-4, 1

e-5],\n 'class_weight': [None, 'balanced'],\n 'decision_function_shap

e': ['ovo', 'ovr'],\n}\n"

This was over 33,000 models! We found that the best model had a test accuracy

of 0.7076. The best parameters were:

C: 1

Class Weight: None

Coefficient 0: 0.0

In [118…

Out[118…

Decision Function Shape: ovo

Degree: 2

Gamma: 0.01

Kernel: rbf

Shhrinking: True

Tol: 0.001

In the next steps, we will finetune better and hopefully find better models!

This notebook was converted with convert.ploomber.io

https://convert.ploomber.io/

